Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Front Genet ; 15: 1365243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660681

RESUMO

Shading treatments impact the tea (Camellia sinensis L.) quality. The sunlight sensitive varieties can be grown under shading nets for better growth and secondary metabolite content. Here, we studied the responses of a sunlight sensitive green tea variety "Huangjinya" by growing under colored shading nets (red, yellow, blue, and black (75% and 95%) shading rates) to find out the most suitable color of the shading net. Red shading was the most promising treatment as it positively affected the weight and length of 100 one-bud-three leaves and reduced the degree and rate of new shoots burn compared to control (natural sunlight). We then explored the comparative metabolomic changes in response to red shading by using UPLC-ESI-MS/MS system. The amino acids and derivatives, flavonoids, and alkaloids were downaccumulated whereas lipids, organic acids, and lignans were upaccumulated in Red shade grown tea samples. The red shading nets caused a decreased catechin, epicatechin, dopamine, and L-tyramine contents but increased caffeine content. We then employed transcriptome sequencing to find key changes in expressions of related genes and pathways. Notably, key genes associated with the phenylpropanoid and flavonoid biosynthesis pathways exhibited complex regulation. These expression changes suggested a potential trend of polymerization or condensation of simple molecules like catechin or pelargonidin into larger molecules like glucoside or proanthocyanidins. Here, Red shading net triggered higher expression of genes enriched in lipid biosynthesis and jasmonic acid biosynthesis, suggesting an interplay of fatty acids and JA in improving tea performance. These findings contribute to the metabolic responses of Huangjinya tea to red shading nets which might have implications for flavor and health benefits. Our data provide a foundation for further exploration and optimization of cultivation practices for this unique tea variety.

2.
Genes (Basel) ; 15(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38397139

RESUMO

As the most important melon cultivar grown in the north-western provinces of China, Hami melon (Cucumis melo) produces large edible fruits that serve as an important dietary component in the world. In general, as a climacteric plant, melon harvested at 60% maturity results in a product with bad quality, while the highest-quality product can be guaranteed when harvesting at 90% maturity. In order to clarify the genetic basis of their distinct profiles of metabolite accumulation, we performed systematic transcriptome analyses between 60% and 90% maturity melons. A total of 36 samples were sequenced and over 1.7 billion reads were generated. Differentially expressed genes in 60% and 90% maturity melons were detected. Hundreds of these genes were functionally enriched in the sucrose and citric acid accumulation process of C. melo. We also detected a number of distinct splicing events between 60% and 90% maturity melons. Many genes associated with sucrose and citric acid accumulation displayed as differentially expressed or differentially spliced between different degrees of maturity of Hami melons, including CmCIN2, CmSPS2, CmBGAL3, and CmSPS2. These results demonstrate that the phenotype pattern differences between 60% and 90% maturity melons may be largely resulted from the significant transcriptome regulation.


Assuntos
Cucumis melo , Transcriptoma , Transcriptoma/genética , Cucumis melo/genética , Perfilação da Expressão Gênica/métodos , Sacarose/metabolismo , Ácido Cítrico/metabolismo
3.
Child Adolesc Psychiatry Ment Health ; 17(1): 138, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098032

RESUMO

BACKGROUND: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder that affects individuals across their lifespan. Early diagnosis and intervention are crucial for improving outcomes. However, current diagnostic methods are often time-consuming, and costly, making them inaccessible to many families. In the current study, we aim to test caregiver-child interaction as a potential tool for screening children with ASD in clinic. METHODS: We enrolled 85 preschool children (Mean age: 4.90 ± 0.65 years, 70.6% male), including ASD children with or without developmental delay (DD), and typical development (TD) children, along with their caregivers. ASD core symptoms were evaluated by Childhood Autism Rating Scale (CARS) and Autism Diagnostic Observation Schedule-Calibrated Severity Scores (ADOS-CSS). Behavioral indicators were derived from video encoding of caregiver-child interaction, including social involvement of children (SIC), interaction time (IT), response of children to social cues (RSC), time for caregiver initiated social interactions (GIS) and time for children initiated social interactions (CIS)). Power spectral density (PSD) values were calculated by EEG signals simultaneously recorded. Partial Pearson correlation analysis was used in both ASD groups to investigate the correlation among behavioral indicators scores and ASD symptom severity and PSD values. Receiver operating characteristic (ROC) analysis was used to describe the discrimination accuracy of behavioral indicators. RESULTS: Compared to TD group, both ASD groups demonstrated significant lower scores of SIC, IT, RSC, CIS (all p values < 0.05), and significant higher time for GIS (all p values < 0.01). SIC scores negatively correlated with CARS (p = 0.006) and ADOS-CSS (p = 0.023) in the ASD with DD group. Compared to TD group, PSD values elevated in ASD groups (all p values < 0.05), and was associated with SIC (theta band: p = 0.005; alpha band: p = 0.003) but not IQ levels. SIC was effective in identifying both ASD groups (sensitivity/specificity: ASD children with DD, 76.5%/66.7%; ASD children without DD, 82.6%/82.2%). CONCLUSION: Our results verified the behavioral paradigm of caregiver-child interaction as an efficient tool for early ASD screening.

4.
Food Chem X ; 19: 100767, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780330

RESUMO

Hot-air and heat-conduction drying are the most common drying patterns in green tea production. However, the differences between them in terms of the resulting green tea chemical compounds have not been illustrated systematically. In this study, 515 volatile and 204 nonvolatile metabolites were selected to compare the differences between hot-air drying green tea (HAGT) and four heat-conduction drying green teas (HCDGTs) using widely targeted metabolomics. The results showed notable changes in volatile compounds; for example, two kinds of HCDGTs preferred to form chestnut-like and caramel-like key odorants. In addition, 14 flavonol glycosides, 10 catechins, 9 phenolic acids, 8 amino acids, 7 flavonols, and 3 sugars were significantly changed between HAGT and HCDGTs (p < 0.05), presenting a tremendous discrepancy in the transformation of nonvolatile compounds. Our results provide clear guidance for the precise manufacturing of green tea by four common heat-drying patterns and hot air-drying patterns.

5.
Phys Med Biol ; 68(19)2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37683675

RESUMO

Objective.Respiratory motion tracking techniques can provide optimal treatment accuracy for thoracoabdominal radiotherapy and robotic surgery. However, conventional imaging-based respiratory motion tracking techniques are time-lagged owing to the system latency of medical linear accelerators and surgical robots. This study aims to investigate the precursor time of respiratory-related neural signals and analyze the potential of neural signals-based respiratory motion tracking.Approach.The neural signals and respiratory motion from eighteen healthy volunteers were acquired simultaneously using a 256-channel scalp electroencephalography (EEG) system. The neural signals were preprocessed using the MNE python package to extract respiratory-related EEG neural signals. Cross-correlation analysis was performed to assess the precursor time and cross-correlation coefficient between respiratory-related EEG neural signals and respiratory motion.Main results.Respiratory-related neural signals that precede the emergence of respiratory motion are detectable via non-invasive EEG. On average, the precursor time of respiratory-related EEG neural signals was 0.68 s. The representative cross-correlation coefficients between EEG neural signals and respiratory motion of the eighteen healthy subjects varied from 0.22 to 0.87.Significance.Our findings suggest that neural signals have the potential to compensate for the system latency of medical linear accelerators and surgical robots. This indicates that neural signals-based respiratory motion tracking is a potential promising solution to respiratory motion and could be useful in thoracoabdominal radiotherapy and robotic surgery.


Assuntos
Eletroencefalografia , Radioterapia (Especialidade) , Humanos , Estudo de Prova de Conceito , Voluntários Saudáveis , Movimento (Física)
7.
Molecules ; 28(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049888

RESUMO

We targeted high-temperature and highly saline old oil fields, whose environmental conditions could be attributed to the significantly high heterogeneity cause by long-term water flooding. The Huabei Oilfield was chosen as the research object. We developed a hydrophobic functional monomer-polymer with temperature and salt resistance by introducing the temperature-resistant and salt-resistant monomer NVP and a hydrophobic functional monomer into the main chain for copolymerization. We used a crosslinking agent with phenolic resin to prepare a weak gel system that showed temperature and salt resistance and investigated its temperature and salt resistance, infective property, plugging performance, liquid flow ability, micropore throat migration, and plugging characteristics. The results obtained using the infrared spectroscopy technique revealed the successful preparation of the phenolic resin crosslinker. The weak gel exhibited good temperature and salt resistance when the polymer concentration was 2000 mg/L, the cohesion ratio was 1:1.5, the additive concentration was 2000 mg/L, the reservoir temperature was 120 °C, and the injected water salinity was 40,300.86 mg/L. The average viscosity retention rate of the 90-day weak gel reached more than 80% and its microstructure was examined. The coreflow experiment results revealed that the weak gel system was characterized by good infectivity. After plugging the weak gel, the effect on the direction of the liquid flow was evident and the flow rate of the low permeability layer increased to a maximum of 48.63% under conditions of varying permeability levels. A significant improvement in the water absorption profile was achieved. The plugging was carried out through a sand-filling pipe under varying permeability conditions and the pressure measuring points in the sand-filling pipe were sucessfully pressurized. The migration ability of the weak gel was good and the blocking rate was >85%.

8.
Foods ; 13(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38201172

RESUMO

Second-drying has an impact on the development of flavor and aroma in black tea. However, the effect of the shape changes of the tea leaves during second-drying on the quality of black tea has yet to be evaluated. In this study, GC-TOFMS and UPLC-HRMS identified 411 volatile metabolites and 253 nonvolatile metabolites. Additionally, 107 nonvolatile compounds and 21 different volatiles were screened. Significant alterations (p < 0.01) were found in 18 amino acid derivatives, 17 carbohydrates, 20 catechins, 19 flavonoids, 13 phenolic acids, and 4 organic acids. The content of certain amino acids and carbohydrates correlated with the shape of black tea. Furthermore, sweet aroma compound formation was facilitated by hot-air second-drying while the remaining second-drying approaches encouraged the formation of the fruity aroma compound. The results of the study provide a theoretical basis and technical instructions for the accurate and precise processing of premium black tea.

10.
Food Sci Nutr ; 10(11): 3608-3620, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36348797

RESUMO

Aroma is an important factor that guides consumers in purchasing and is thus very important in melon research. To our knowledge, the number of studies with a focus on the aroma differences of the same melon variety in different production areas is largely limited. In this study, the differences in aroma components of "Nasmi" melons from two different production regions were analyzed using gas-phase ion migration spectroscopy. Transcriptome sequencing was performed for analyzing fragrance-related genes. Results showed that there were significant differences in the aroma components between products from the two regions. The total amount of aroma compounds from the Turpan region (TT) was 1.7 times higher than that from the Altay region (AT). Through the analysis of transcriptome data, the key genes encoding melon aroma components in different regions were identified as ethanol dehydrogenase, 3-hydroxyl-coenzyme A (CoA) dehydrogenase, acyl-CoA oxidase, long-chain acyl-CoA synthetase, acetaldehyde dehydrogenase, and acetyl-CoA acyltransferase. Real-time quantitative polymerase chain reaction (RT-qPCR) showed that the verified genes were similar to the transcriptome. In this study, the main aroma components of the same variety of melon that differed in different production areas and the key genes causing these differences were identified. In addition, the aroma metabolic pathway of melon in different regions was preliminarily elucidated. These results could provide a theoretical basis for further study of the formation mechanism of melon aroma and breeding.

11.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430189

RESUMO

Sugarcane is the most important sugar crop, contributing ≥80% to total sugar production around the world. Spodoptera frugiperda is one of the main pests of sugarcane, potentially causing severe yield and sugar loss. The identification of key defense factors against S. frugiperda herbivory can provide targets for improving sugarcane resistance to insect pests by molecular breeding. In this work, we used one of the main sugarcane pests, S. frugiperda, as the tested insect to attack sugarcane. Integrated transcriptome and metabolomic analyses were performed to explore the changes in gene expression and metabolic processes that occurred in sugarcane leaf after continuous herbivory by S. frugiperda larvae for 72 h. The transcriptome analysis demonstrated that sugarcane pest herbivory enhanced several herbivory-induced responses, including carbohydrate metabolism, secondary metabolites and amino acid metabolism, plant hormone signaling transduction, pathogen responses, and transcription factors. Further metabolome analysis verified the inducement of specific metabolites of amino acids and secondary metabolites by insect herbivory. Finally, association analysis of the transcriptome and metabolome by the Pearson correlation coefficient method brought into focus the target defense genes against insect herbivory in sugarcane. These genes include amidase and lipoxygenase in amino acid metabolism, peroxidase in phenylpropanoid biosynthesis, and pathogenesis-related protein 1 in plant hormone signal transduction. A putative regulatory model was proposed to illustrate the sugarcane defense mechanism against insect attack. This work will accelerate the dissection of the mechanism underlying insect herbivory in sugarcane and provide targets for improving sugarcane variety resistance to insect herbivory by molecular breeding.


Assuntos
Herbivoria , Saccharum , Animais , Spodoptera/genética , Saccharum/genética , Transcriptoma , Reguladores de Crescimento de Plantas , Metaboloma , Insetos/fisiologia , Grão Comestível/genética , Açúcares , Aminoácidos/genética
12.
Genes (Basel) ; 13(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36292652

RESUMO

The content of metal ions in fruits is inseparable from plant intake of trace elements and health effects in the human body. To understand metal ion content in the fruit and pericarp of melon (Cucumis melo L.) and the candidate genes responsible for controlling this process, we analyzed the metal ion content in distinct parts of melon fruit and pericarp and performed RNA-seq. The results showed that the content of metal ions in melon fruit tissue was significantly higher than that in the pericarp. Based on transcriptome expression profiling, we found that the fruit and pericarp contained elevated levels of DEGs. GO functional annotations included cell surface receptor signaling, signal transduction, organic substance metabolism, carbohydrate derivative binding, and hormone-mediated signaling pathways. KEGG pathways included pectate lyase, pentose and glucuronate interconversions, H+-transporting ATPase, oxidative phosphorylation, plant hormone signal transduction, and MAPK signaling pathways. We also analyzed the expression patterns of genes and transcription factors involved in hormone biosynthesis and signal transduction. Using weighted gene co-expression network analysis (WGCNA), a co-expression network was constructed to identify a specific module that was significantly correlated with the content of metal ions in melon, after which the gene expression in the module was measured. Connectivity and qRT-PCR identified five candidate melon genes, LOC103501427, LOC103501539, LOC103503694, LOC103504124, and LOC107990281, associated with metal ion content. This study provides a theoretical basis for further understanding the molecular mechanism of heavy metal ion content in melon fruit and peel and provides new genetic resources for the study of heavy metal ion content in plant tissues.


Assuntos
Cucumis melo , Cucurbitaceae , Metais Pesados , Oligoelementos , Humanos , Cucumis melo/genética , Cucurbitaceae/genética , Reguladores de Crescimento de Plantas/metabolismo , Oligoelementos/metabolismo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Fatores de Transcrição/metabolismo , Hormônios , Pentoses/metabolismo , Glucuronatos/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Receptores de Superfície Celular/metabolismo
13.
Front Plant Sci ; 13: 909765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812958

RESUMO

Our previous study showed that colored net shading treatments had comparable effects on the reduction of bitter and astringent compounds such as flavonol glycosides in tea leaves, compared with black net shading treatment, whereas the effects on the biomass and phytohormones are still unclear. In this study, we investigated the phytohormone and transcriptome profiles of tea leaves under different shading treatments, using black, blue, and red nets with the same shade percentages. The bud density, fresh weight of 100 buds, and yield under blue net shading treatments were greatly elevated by 2.00-fold, 1.24-fold, and 2.48-fold, compared with black net shading treatment, while their effects on flavonoid composition were comparable with black net shading treatment. The transcriptome profiles of different shade net-treated samples were well resolved and discriminated from control. The KEGG result indicated that the pathways of phenylpropanoid biosynthesis, MAPK signaling pathways, and plant hormone signal transduction were differentially regulated by different shading treatments. The co-expression analysis showed that the contents of salicylic acid and melatonin were closely correlated with certain light signal perception and signaling genes (p < 0.05), and UVR8, PHYE, CRY1, PHYB, PHOT2, and HY5 had more close interactions with phytohormone biosynthetic genes (p < 0.05). Our results suggest that different shading treatments can mediate the growth of tea plants, which could be attributed to the regulatory effect on phytohormones levels, providing an instruction for the production of summer/autumn tea and matcha.

14.
Insects ; 13(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35735837

RESUMO

Chilo sacchariphagus Bojer is an important sugarcane pest globally. Along with genetic modification strategies, the sterile insect technique (SIT) has gained more attention as an environment-friendly method for pest control. The identification of key genes associated with sex determination and differentiation will provide important basic information for this control strategy. As such, the transcriptome sequencing of female and male adults was conducted in order to understand the sex-biased gene expression and molecular basis of sex determination and differentiation in this species. A total of 60,429 unigenes were obtained; among them, 34,847 genes were annotated. Furthermore, 11,121 deferentially expressed genes (DEGs) were identified, of which 8986 were male-biased and 2135 were female-biased genes. The male-biased genes were enriched for carbon metabolism, peptidase activity and transmembrane transport, while the female-biased genes were enriched for the cell cycle, DNA replication, and the MAPK signaling pathway. In addition, 102 genes related to sex-determination and differentiation were identified, including the protein toll, ejaculatory bulb-specific protein, fruitless, transformer-2, sex-lethal, beta-Catenin, sox, gata4, beta-tubulin, cytosol aminopeptidase, seminal fluid, and wnt4. Furthermore, transcription factors such as myb, bhlh and homeobox were also found to be potentially related to sex determination and differentiation in this species. Our data provide new insights into the genetic elements associated with sex determination and differentiation in Chilo sacchariphagus, and identified potential candidate genes to develop pest-control strategies.

15.
Molecules ; 27(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35268789

RESUMO

Hydrogel antibacterial agent is an ideal antibacterial material because of its ability to diffuse antibacterial molecules into the decayed area by providing a suitable microenvironment and acting as a protective barrier on the decay interface. The biocompatibility and biodegradation make the removal process easy and it is already widely used in medical fields. However, there have been few reports on its application for controlling postharvest diseases in fruit. In this study, the Chitosan-silver (CS-Ag) complex hydrogels were prepared using the physical crosslinking method, which is used for controlling postharvest diseases in grape. The prepared hydrogels were stable for a long period at room temperature. The structure and surface morphology of CS-Ag composite hydrogels were characterized by UV-Vis, FTIR, SEM, and XRD. The inhibitory effects of CS-Ag hydrogel on disease in grape caused by P. expansum, A. niger, and B. cinerea were investigated both in vivo and in vitro. The remarkable antibacterial activity of CS-Ag hydrogels was mainly due to the combined antibacterial and antioxidant effects of CS and Ag. Preservation tests showed that the CS-Ag hydrogel had positive fresh-keeping effect. This revealed that CS-Ag hydrogels can play a critical role in controlling fungal disease in grapes.


Assuntos
Quitosana
17.
Food Chem ; 368: 130858, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34425334

RESUMO

A modified quick, easy, cheap, effective, rugged, and safe extraction procedure combined with ultra-performance liquid chromatographic separation and ion mobility quadrupole time-of-flight mass spectrometry was developed to determine the presence of 20 mycotoxins (i.e., Alternaria toxins, ochratoxin, patulin, aflatoxin and trichothecenes) in fruit samples from Xinjiang. A complete platform, including screening via an in-house library, confirmation and quantification using reference standards, was established, which provided accurate MS data and complete spectra containing the fragment ions for each analyte. To evaluate the performance of the developed method, satisfactory validation parameters, such as linearity (R2 ≥ 0.9992), precision (RSDs ≤ 9.8%), recovery (81.2-99.2%), LOD (0.06-2.22 µg kg-1), and LOQ (0.2-7.39 µg kg-1), were obtained. The analysis of 130 fruit samples revealed nonnegligible contamination with mycotoxins; specifically, the highest levels of three Alternaria toxins were detected in jujube, wolfberries and raisins.


Assuntos
Micotoxinas , Alternaria , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Frutas/química , Micotoxinas/análise , Espectrometria de Massas em Tandem
18.
AMB Express ; 11(1): 172, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34919198

RESUMO

To select an eco-friendly nitrogen (N) application level for sugarcane production, soil fertility and soil bacterial diversity under different nitrogen application levels were analyzed. Four levels of urea applications were high Nitrogen (H, 964 kg ha-1), medium Nitrogen (M, 482 kg ha-1), low Nitrogen (L, 96 kg ha-1) and no Nitrogen (CK, 0 kg ha-1) treatments, respectively. The results showed that the soil microbial biomass carbon and phosphorus were altered significantly by CK and L treatments. Moreover, the indexes of soil bacterial richness and diversity in the sugarcane field could be significantly improved by L. At the genus level, SC-I-84, Mycobacterium, Micropepsaceae, Saccharimonadales, Subgroup_2 and Acetobacteraceae were the unique dominant bacteria in the soil with the H treatment. JG30-KF-CM45 and Jatrophihabitans were the unique dominant genera in the M treatment. Subgroup_6, HSB_OF53-F07, Streptomyces, 67-14, SBR1031 and KD4-96 were the unique dominant genera in the L treatment. In contrast, FCPS473, Actinospica, 1921-2, Sinomonas, and Ktedonobacteraceae were the unique dominant genera in the CK treatment. The findings suggest that soil fertility all could be changed by different N application levels, but the most increasing integral effect only could be found in L. Moreover, even though soil bacterial richness could be significantly promoted by the M and H treatments, but soil bacterial diversity could not be significantly improved. On the contrary, soil bacterial diversity and richness all could be improved by L treatment. In addition, higher abundance of unique soil dominant bacteria could be only found in L treatment which compared to the CK, M and H treatments. These findings suggest that the rate of 96 kg ha-1 N application is ecofriendly for sugarcane production in Guangxi.

19.
Molecules ; 26(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885740

RESUMO

Both UV and blue light have been reported to regulate the biosynthesis of flavonoids in tea plants; however, the respective contributions of the corresponding regions of sunlight are unclear. Additionally, different tea cultivars may respond differently to altered light conditions. We investigated the responses of different cultivars ('Longjing 43', 'Zhongming 192', 'Wanghai 1', 'Jingning 1' and 'Zhonghuang 2') to the shade treatments (black and colored nets) regarding the biosynthesis of flavonoids. For all cultivars, flavonol glycosides showed higher sensitivity to light conditions compared with catechins. The levels of total flavonol glycosides in the young shoots of different tea cultivars decreased with the shade percentages of polyethylene nets increasing from 70% to 95%. Myricetin glycosides and quercetin glycosides were more sensitive to light conditions than kaempferol glycosides. The principal component analysis (PCA) result indicated that shade treatment greatly impacted the profiles of flavonoids in different tea samples based on the cultivar characteristics. UV is the crucial region of sunlight enhancing flavonol glycoside biosynthesis in tea shoots, which is also slight impacted by light quality according to the results of the weighted correlation network analysis (WGCNA). This study clarified the contributions of different wavelength regions of sunlight in a field experiment, providing a potential direction for slightly bitter and astringent tea cultivar breeding and instructive guidance for practical field production of premium teas based on light regimes.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Flavonoides/biossíntese , Glicosídeos/biossíntese , Brotos de Planta/crescimento & desenvolvimento , Camellia sinensis/efeitos da radiação , Flavonoides/química , Flavonoides/efeitos da radiação , Glicosídeos/efeitos da radiação , Quempferóis/química , Brotos de Planta/efeitos da radiação , Análise de Componente Principal , Luz Solar , Raios Ultravioleta
20.
Front Plant Sci ; 12: 796189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069651

RESUMO

Sugarcane is one of the most important industrial crops globally. It is the second largest source of bioethanol, and a major crop for biomass-derived electricity and sugar worldwide. Smut, caused by Sporisorium scitamineum, is a major sugarcane disease in many countries, and is managed by smut-resistant varieties. In China, smut remains the single largest constraint for sugarcane production, and consequently it impacts the value of sugarcane as an energy feedstock. Quantitative trait loci (QTLs) associated with smut resistance and linked diagnostic markers are valuable tools for smut resistance breeding. Here, we developed an F1 population (192 progeny) by crossing two sugarcane varieties with contrasting smut resistance and used for genome-wide single nucleotide polymorphism (SNP) discovery and mapping, using a high-throughput genotyping method called "specific locus amplified fragment sequencing (SLAF-seq) and bulked-segregant RNA sequencing (BSR-seq). SLAF-seq generated 148,500 polymorphic SNP markers. Using SNP and previously identified SSR markers, an integrated genetic map with an average 1.96 cM marker interval was produced. With this genetic map and smut resistance scores of the F1 individuals from four crop years, 21 major QTLs were mapped, with a phenotypic variance explanation (PVE) > 8.0%. Among them, 10 QTLs were stable (repeatable) with PVEs ranging from 8.0 to 81.7%. Further, four QTLs were detected based on BSR-seq analysis. aligning major QTLs with the genome of a sugarcane progenitor Saccharum spontaneum, six markers were found co-localized. Markers located in QTLs and functional annotation of BSR-seq-derived unigenes helped identify four disease resistance candidate genes located in major QTLs. 77 SNPs from major QTLs were then converted to Kompetitive Allele-Specific PCR (KASP) markers, of which five were highly significantly linked to smut resistance. The co-localized QTLs, candidate resistance genes, and KASP markers identified in this study provide practically useful tools for marker-assisted sugarcane smut resistance breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...